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1. Riemann Integrable Functions

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a, b] and m ≤ f ≤ M on
[a, b] .

(ii): Let P : a = x0 < x1 < .... < xn = b denote a partition on [a, b]; Put ∆xi = xi − xi−1 and
‖P‖ = max ∆xi.

(iii): Mi(f, P ) := sup{f(x) : x ∈ [xi−1, xi}; mi(f, P ) := inf{f(x) : x ∈ [xi−1, xi}.
Set ωi(f, P ) = Mi(f, P )−mi(f, P ).

(iv): (the upper sum of f): U(f, P ) :=
∑
Mi(f, P )∆xi

(the lower sum of f). L(f, P ) :=
∑
mi(f, P )∆xi.

Remark 1.1. It is clear that for any partition on [a, b], we always have

(i) m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).
(ii) L(−f, P ) = −U(f, P ) and U(−f, P ) = −L(f, P ).

The following lemma is the critical step in this section.

Lemma 1.2. Let P and Q be the partitions on [a, b]. We have the following assertions.

(i) If P ⊆ Q, then L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).
(ii) We always have L(f, P ) ≤ U(f,Q).

Proof. For Part (i), we first claim that L(f, P ) ≤ L(f,Q) if P ⊆ Q. By using the induction on
l := #Q−#P , it suffices to show that L(f, P ) ≤ L(f,Q) as l = 1. Let P : a = x0 < x1 < · · · < xn = b
and Q = P ∪ {c}. Then c ∈ (xs−1, xs) for some s. Notice that we have

ms(f, P ) ≤ min{ms(f,Q),ms+1(f,Q)}.
So, we have

ms(f, P )(xs − xs−1) ≤ ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c).
This gives the following inequality as desired.

(1.1) L(f,Q)− L(f, P ) = ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c)−ms(f, P )(xs − xs−1) ≥ 0.

Now by considering −f in the Inequality 1.1 above, we see that U(f,Q) ≤ U(f, P ).
For Part (ii), let P and Q be any pair of partitions on [a, b]. Notice that P ∪Q is also a partition on
[a, b] with P ⊆ P ∪Q and Q ⊆ P ∪Q. So, Part (i) implies that

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

The proof is complete. �
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The following plays an important role in this chapter.

Definition 1.3. Let f be a bounded function on [a, b]. The upper integral (resp. lower integral) of f

over [a, b], write
∫ b
a f (resp.

∫ b
a f), is defined by∫ b

a
f = inf{U(f, P ) : P is a partation on [a, b]}.

(resp. ∫ b

a
f = sup{L(f, P ) : P is a partation on [a, b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 1.1.

Proposition 1.4. Let f and g both are bounded functions on [a, b]. With the notation as above, we
always have

(i) ∫ b

a
f ≤

∫ b

a
f.

(ii)
∫ b
a (−f) = −

∫ b
a f.

(iii) ∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g) ≤

∫ b

a
(f + g) ≤

∫ b

a
f +

∫ b

a
g.

Proof. Part (i) follows from Lemma 1.2 at once.
Part (ii) is clearly obtained by L(−f, P ) = −U(f, P ).

For proving the inequality
∫ b
a f +

∫ b
a g ≤

∫ b
a (f + g) ≤ first. It is clear that we have L(f, P ) +L(g, P ) ≤

L(f +g, P ) for all partitions P on [a, b]. Now let P1 and P2 be any partition on [a, b]. Then by Lemma
1.2, we have

L(f, P1) + L(g, P2) ≤ L(f, P1 ∪ P2) + L(g, P1 ∪ P2) ≤ L(f + g, P1 ∪ P2) ≤
∫ b

a
(f + g).

So, we have

(1.2)

∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g).

As before, we consider −f and −g in the Inequality 1.2, we get
∫ b
a (f + g) ≤

∫ b
a f +

∫ b
a g as desired. �

The following example shows the strict inequality in Proposition 1.4 (iii) may hold in general.

Example 1.5. Define a function f, g : [0, 1]→ R by

f(x) =

{
1 if x ∈ [0, 1] ∩Q;

−1 otherwise.
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and

g(x) =

{
−1 if x ∈ [0, 1] ∩Q;

1 otherwise.

Then it is easy to see that f + g ≡ 0 and∫ 1

0
f =

∫ 1

0
g = 1 and

∫ 1

0
f =

∫ 1

0
g = −1.

So, we have

−2 =

∫ b

a
f +

∫ b

a
g <

∫ b

a
(f + g) = 0 =

∫ b

a
(f + g) <

∫ b

a
f +

∫ b

a
g = 2.

We can now reaching the main definition in this chapter.

Definition 1.6. Let f be a bounded function on [a, b]. We say that f is Riemann integrable over [a, b]

if
∫ a
b f =

∫ b
a f . In this case, we write

∫ b
a f for this common value and it is called the Riemann integral

of f over [a, b].
Also, write R[a, b] for the class of Riemann integrable functions on [a, b].

Proposition 1.7. With the notation as above, R[a, b] is a vector space over R and the integral∫ b

a
: f ∈ R[a, b] 7→

∫ b

a
f ∈ R

defines a linear functional, that is, αf + βg ∈ R[a, b] and
∫ b
a (αf + βg) = α

∫ b
a f + β

∫ b
a g for all

f, g ∈ R[a, b] and α, β ∈ R.

Proof. Let f, g ∈ R[a, b] and α, β ∈ R. Notice that if α ≥ 0, it is clear that
∫ b
aαf = α

∫ b
a f = α

∫ b
a f =

α
∫ b
a f =

∫ b
aαf . Also, if α < 0, we have

∫ b
aαf = α

∫ b
a f = α

∫ b
a f = α

∫ b
a f =

∫ b
aαf . Therefore, we have∫ b

a αf = α
∫ b
a f for all α ∈ R. For showing f + g ∈ R[a, b] and

∫ b
a (f + g) =

∫ b
a f +

∫ b
a g, these will

follows from Proposition 1.4 (iii) at once. The proof is finished. �

The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P : a = x0 < x1 < · · · < xn = b and 1 ≤ i ≤ n, put

ωi(f, P ) := sup{|f(x)− f(x′)| : x, x′ ∈ [xi−1, xi]}.

It is easy to see that U(f, P )− L(f, P ) =
∑n

i=1 ωi(f, P )∆xi.

Theorem 1.8. Let f be a bounded function on [a, b]. Then f ∈ R[a, b] if and only if for all ε > 0,
there is a partition P : a = x0 < · · · < xn = b on [a, b] such that

(1.3) 0 ≤ U(f, P )− L(f, P ) =
n∑
i=1

ωi(f, P )∆xi < ε.
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Proof. Suppose that f ∈ R[a, b]. Let ε > 0. Then by the definition of the upper integral and lower

integral of f , we can find the partitions P and Q such that U(f, P ) <
∫ b
a f + ε and

∫ b
a f − ε < L(f,Q).

By considering the partition P ∪Q, we see that∫ b

a
f − ε < L(f,Q) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f, P ) <

∫ b

a
f + ε.

Since
∫ b
a f =

∫ b
a f =

∫ b
a f , we have 0 ≤ U(f, P ∪Q) − L(f, P ∪Q) < 2ε. So, the partition P ∪Q is as

desired.
Conversely, let ε > 0, assume that the Inequality 1.3 above holds for some partition P . Notice that
we have

L(f, P ) ≤
∫ b

a
f ≤

∫ b

a
f ≤ U(f, P ).

So, we have 0 ≤
∫ b
a f −

∫ b
a f < ε for all ε > 0. The proof is finished. �

Remark 1.9. Theorem 1.8 tells us that a bounded function f is Riemann integrable over [a, b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 1.10. Let f : [0, 1]→ R be the function defined by

f(x) =

{
1
p if x = q

p , where p, q are relatively prime positive integers;

0 otherwise.

Then f ∈ R[0, 1].
(Notice that the set of all discontinuous points of f , say D, is just the set of all (0, 1] ∩Q. Since the
set (0, 1] ∩ Q is countable, we can write (0, 1] ∩ Q = {z1, z2, ....}. So, if we let m(D) be the “size′′ of
the set D, then m(D) = m(

⋃∞
i=1{zi}) =

∑∞
i=1m({zi}) = 0, in here, you may think that the size of

each set {zi} is 0. )

Proof. Let ε > 0. By Theorem 1.8, it aims to find a partition P on [0, 1] such that

U(f, P )− L(f, P ) < ε.

Notice that for x ∈ [0, 1] such that f(x) ≥ ε if and only if x = q/p for a pair of relatively prime positive
integers p, q with 1

p ≥ ε. Since 1 ≤ q ≤ p, there are only finitely many pairs of relatively prime positive

integers p and q such that f( qp) ≥ ε. So, if we let S := {x ∈ [0, 1] : f(x) ≥ ε}, then S is a finite subset

of [0, 1]. Let L be the number of the elements in S. Then, for any partition P : a = x0 < · · · < xn = 1,
we have

n∑
i=1

ωi(f, P )∆xi = (
∑

i:[xi−1,xi]∩S=∅

+
∑

i:[xi−1,xi]∩S 6=∅

) ωi(f, P )∆xi.

Notice that if [xi−1, xi] ∩ S = ∅, then we have ωi(f, P ) ≤ ε and thus,∑
i:[xi−1,xi]∩S=∅

ωi(f, P )∆xi ≤ ε
∑

i:[xi−1,xi]∩S=∅

∆xi ≤ ε(1− 0).

On the other hand, since there are at most 2L sub-intervals [xi−1, xi] such that [xi−1, xi] ∩ S 6= ∅ and
ωi(f, P ) ≤ 1 for all i = 1, ..., n, so, we have∑

i:[xi−1,xi]∩S 6=∅

ωi(f, P )∆xi ≤ 1 ·
∑

i:[xi−1,xi]∩S 6=∅

∆xi ≤ 2L‖P‖.
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We can now conclude that for any partition P , we have
n∑
i=1

ωi(f, P )∆xi ≤ ε+ 2L‖P‖.

So, if we take a partition P with ‖P‖ < ε/(2L), then we have
∑n

i=1 ωi(f, P )∆xi ≤ 2ε.
The proof is finished. �

Proposition 1.11. Let f be a function defined on [a, b]. If f is either monotone or continuous on
[a, b], then f ∈ R[a, b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = x0 < · · · < xn = b, we have ωi(f, P ) = f(xi) − f(xi−1). So, if
‖P‖ < ε, we have
n∑
i=1

ωi(f, P )∆xi =
n∑
i=1

(f(xi)−f(xi−1))∆xi < ‖P‖
n∑
i=1

(f(xi)−f(xi−1)) = ‖P‖(f(b)−f(a)) < ε(f(b)−f(a)).

Therefore, f ∈ R[a, b] if f is monotone.
Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any ε > 0,
there is δ > 0 such that |f(x)−f(x′)| < ε as x, x′ ∈ [a, b] with |x−x′| < δ. So, if we choose a partition
P with ‖P‖ < δ, then ωi(f, P ) < ε for all i. This implies that

n∑
i=1

ωi(f, P )∆xi ≤ ε
n∑
i=1

∆xi = ε(b− a).

The proof is complete. �

Proposition 1.12. We have the following assertions.

(i) If f, g ∈ R[a, b] with f ≤ g, then
∫ b
a f ≤

∫ b
a g.

(ii) If f ∈ R[a, b], then the absolute valued function |f | ∈ R[a, b]. In this case, we have |
∫ b
a f | ≤∫ b

a |f |.

Proof. For Part (i), it is clear that we have the inequality U(f, P ) ≤ U(g, P ) for any partition P . So,

we have
∫ b
a f =

∫ b
a f ≤

∫ b
a g =

∫ b
a g.

For Part (ii), the integrability of |f | follows immediately from Theorem 1.8 and the simple inequality
||f |(x′) − |f |(x′′)| ≤ |f(x′) − f(x′′)| for all x′, x′′ ∈ [a, b]. Thus, we have U(|f |, P ) − L(|f |, P ) ≤
U(f, P )− L(f, P ) for any partition P on [a, b].

Finally, since we have −f ≤ |f | ≤ f , by Part (i), we have |
∫ b
a f | ≤

∫ b
a |f | at once. �

Proposition 1.13. Let a < c < b. We have f ∈ R[a, b] if and only if the restrictions f |[a,c] ∈ R[a, c]
and f |[c,b] ∈ R[c, b]. In this case we have

(1.4)

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proof. Let f1 := f |[a,c] and f2 := f |[c,b].
It is clear that we always have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(P, f)− L(f, P )

for any partition P1 on [a, c] and P2 on [c, b] with P = P1 ∪ P2.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f ∈ R[a, b], for any ε > 0, there is a partition Q on [a, b]
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such that U(f,Q)− L(f,Q) < ε by Theorem 1.8. Notice that there are partitions P1 and P2 on [a, c]
and [c, b] respectively such that P := Q ∪ {c} = P1 ∪ P2. Thus, we have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(f, P )− L(f, P ) ≤ U(f,Q)− L(f,Q) < ε.

So, we have f1 ∈ R[a, c] and f2 ∈ R[c, b].
It remains to show the Equation 1.4 above. Notice that for any partition P1 on [a, c] and P2 on [c, b],
we have

L(f1, P1) + L(f2, P2) = L(f, P1 ∪ P2) ≤
∫ b

a
f =

∫ b

a
f.

So, we have
∫ c
a f +

∫ b
c f ≤

∫ b
a f . Then the inverse inequality can be obtained at once by considering

the function −f . Then the resulted is obtained by using Theorem 1.8. �


